• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Bai, Yulong (Bai, Yulong.) | Fu, Xusong (Fu, Xusong.) | Guo, Jingjing (Guo, Jingjing.) | Shi, Ge (Shi, Ge.) | Wu, Lifang (Wu, Lifang.)

收录:

EI Scopus SCIE

摘要:

Recently, recommender systems have witnessed the fast evolution of Internet services. However, it suffers hugely from inherent bias and sparsity issues in interactions. The conventional uniform embedding learning policies fail to utilize the imbalanced interaction clue and produce suboptimal representations to users and items for recommendation. Towards the issue, this work is dedicated to bias-aware embedding learning in a decomposed manner and proposes a counterfactual graph convolutional learning (CGCL) model for personalized recommendation. Instead of debiasing with uniform interaction sampling, we follow the natural interaction bias to model users' interests with a counterfactual hypothesis. CGCL introduces bias-aware counterfactual masking on interactions to distinguish the effects between majority and minority causes on the counterfactual gap. It forms multiple counterfactual worlds to extract users' interests in minority causes compared to the factual world. Concretely, users and items are represented with a causal decomposed embedding of majority and minority interests for recommendation. Experiments show that the proposed CGCL is superior to the state-of-the-art baselines. The performance illustrates the rationality of the counterfactual hypothesis in bias-aware embedding learning for personalized recommendation.

关键词:

interaction bias Embedding learning graph convolution personalized recommendation

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100024, Peoples R China
  • [ 2 ] [Bai, Yulong]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100024, Peoples R China
  • [ 3 ] [Guo, Jingjing]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100024, Peoples R China
  • [ 4 ] [Shi, Ge]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100024, Peoples R China
  • [ 5 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100024, Peoples R China
  • [ 6 ] [Fu, Xusong]Meituan, Block B,4 Wang Jing East Rd, Beijing 100102, Peoples R China

通讯作者信息:

  • [Shi, Ge]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100024, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY

ISSN: 2157-6904

年份: 2024

期: 4

卷: 15

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:572/4963647
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司