• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Xiaoping (Yang, Xiaoping.) | Zhang, Xige (Zhang, Xige.) | Liang, Shaoling (Liang, Shaoling.) | Wang, Dongyang (Wang, Dongyang.) | Wang, Zihao (Wang, Zihao.) | Hu, Zhaoming (Hu, Zhaoming.) | Fang, Chao (Fang, Chao.)

收录:

CPCI-S EI Scopus

摘要:

To satisfy the differentiated service requirements of delay-sensitive and computing-intensive tasks in unmanned aerial vehicle (UAV) networks, it is urgent to efficiently allocate limited network resources to improve network performance. In this paper, we propose an intelligent task offloading scheme to optimize resource allocation in UAV networks with content caching. Specifically, we formulate the joint optimization of task offloading and resource allocation as a latency minimization model for the caching-assisted UAV system. Then, a new deep reinforcement learning (DRL) algorithm is designed to make offloading and resource allocation decisions based on current network state information, significantly improving resource utilization. Numerical results indicate that the model significantly reduces network latency in comparison to its existing benchmarks in caching-assisted UAV networks.

关键词:

content caching task offloading resource allocation unmanned aerial vehicle networks deep reinforcement learning

作者机构:

  • [ 1 ] [Yang, Xiaoping]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Zihao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Hu, Zhaoming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Fang, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Yang, Xiaoping]Guangxi Key Lab Digital Infrastruct, Nanning 530000, Peoples R China
  • [ 6 ] [Liang, Shaoling]Guangxi Key Lab Digital Infrastruct, Nanning 530000, Peoples R China
  • [ 7 ] [Zhang, Xige]Beijing Inst Astronaut Syst Engn, Beijing, Peoples R China
  • [ 8 ] [Wang, Dongyang]Beijing Inst Astronaut Syst Engn, Beijing, Peoples R China

通讯作者信息:

  • [Fang, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

2024 5TH INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE, ICTC 2024

年份: 2024

页码: 157-162

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:609/4949134
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司