• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Ye (Yuan, Ye.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Ma, Fenglong (Ma, Fenglong.) | Xun, Guangxu (Xun, Guangxu.) | Wang, Yaqing (Wang, Yaqing.) | Su, Lu (Su, Lu.) | Zhang, Aidong (Zhang, Aidong.)

收录:

CPCI-S EI Scopus SCIE PubMed

摘要:

Background Sleep is a complex and dynamic biological process characterized by different sleep patterns. Comprehensive sleep monitoring and analysis using multivariate polysomnography (PSG) records has achieved significant efforts to prevent sleep-related disorders. To alleviate the time consumption caused by manual visual inspection of PSG, automatic multivariate sleep stage classification has become an important research topic in medical and bioinformatics. Results We present a unified hybrid self-attention deep learning framework, namely HybridAtt, to automatically classify sleep stages by capturing channel and temporal correlations from multivariate PSG records. We construct a new multi-view convolutional representation module to learn channel-specific and global view features from the heterogeneous PSG inputs. The hybrid attention mechanism is designed to further fuse the multi-view features by inferring their dependencies without any additional supervision. The learned attentional representation is subsequently fed through a softmax layer to train an end-to-end deep learning model. Conclusions We empirically evaluate our proposed HybridAtt model on a benchmark PSG dataset in two feature domains, referred to as the time and frequency domains. Experimental results show that HybridAtt consistently outperforms ten baseline methods in both feature spaces, demonstrating the effectiveness of HybridAtt in the task of sleep stage classification.

关键词:

Attention mechanism Deep learning Multivariate time series Polysomnography Sleep stage classification

作者机构:

  • [ 1 ] [Yuan, Ye]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 2 ] [Jia, Kebin]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 3 ] [Yuan, Ye]Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 4 ] [Jia, Kebin]Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 5 ] [Yuan, Ye]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Jia, Kebin]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 7 ] [Ma, Fenglong]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
  • [ 8 ] [Wang, Yaqing]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
  • [ 9 ] [Su, Lu]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
  • [ 10 ] [Xun, Guangxu]Univ Virginia, Dept Comp Sci, Charlottesville, NV USA
  • [ 11 ] [Zhang, Aidong]Univ Virginia, Dept Comp Sci, Charlottesville, NV USA

通讯作者信息:

  • 贾克斌

    [Jia, Kebin]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China;;[Jia, Kebin]Beijing Lab Adv Informat Networks, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BMC BIOINFORMATICS

ISSN: 1471-2105

年份: 2019

卷: 20

3 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:58

JCR分区:2

被引次数:

WoS核心集被引频次: 28

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:178/3611345
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司