收录:
摘要:
The precipitation-hardened Sm-Co permanent magnets relied on the pinning of nanocellular structures to achieve high coercivity, and have an irreplaceable position in high-temperature applications. In this article, by employing micromagnetic simulations and magnetic domain observations, the pinning behavior of lamellar phases (Zphase) were investigated, which has not been well understood before. The results showed that the Z-phase can serve as a strong pinning position, but due to the parallel lamellar distribution, the magnetic domain walls can move around. Additionally, the effect of Z-phase on coercivity was achieved by changing the morphology of magnetic domain walls during magnetization reversal. For attractive pinning, the coercivity was reduced by the Z-phase, while for repulsive pinning, the Z-phase increased the coercivity when gamma Z<0.54 gamma H. Our findings can provide a novel understanding of the coercivity mechanism of precipitation-hardened Sm-Co permanent magnets.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN: 0925-8388
年份: 2024
卷: 1009
6 . 2 0 0
JCR@2022
归属院系: