• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jinli (Zhang, Jinli.) | Ren, Hongwei (Ren, Hongwei.) | Jiang, Zongli (Jiang, Zongli.) (学者:蒋宗礼) | Chen, Zheng (Chen, Zheng.) | Yang, Ziwei (Yang, Ziwei.) | Matsubara, Yasuko (Matsubara, Yasuko.) | Sakurai, Yasushi (Sakurai, Yasushi.)

收录:

EI Scopus SCIE

摘要:

The analysis and comprehension of multi-omics data has emerged as a prominent topic in the field of bioinformatics and data science. However, the sparsity characteristics and high dimensionality of omics data pose difficulties in terms of extracting meaningful information. Moreover, the heterogeneity inherent in multiple omics sources makes the effective integration of multi-omics data challenging To tackle these challenges, we propose MFCC-SAtt, a multi-level feature contrast clustering model based on self-attention to extract informative features from multi-omics data. MFCC-SAtt treats each omics type as a distinct modality and employs autoencoders with self-attention for each modality to integrate and compress their respective features into a shared feature space. By utilizing a multi-level feature extraction framework along with incorporating a semantic information extractor, we mitigate optimization conflicts arising from different learning objectives. Additionally, MFCC-SAtt guides deep clustering based on multi-level features which further enhances the quality of output labels. By conducting extensive experiments on multi-omics data, we have validated the exceptional performance of MFCC-SAtt. For instance, in a pan-cancer clustering task, MFCC-SAtt achieved an accuracy of over 80.38%.

关键词:

Multi-omics clustering contrastive learning self-attention

作者机构:

  • [ 1 ] [Zhang, Jinli]Beijing Univ Technol, Dept Comp Sci, Beijing 100022, Peoples R China
  • [ 2 ] [Ren, Hongwei]Beijing Univ Technol, Dept Comp Sci, Beijing 100022, Peoples R China
  • [ 3 ] [Jiang, Zongli]Beijing Univ Technol, Dept Comp Sci, Beijing 100022, Peoples R China
  • [ 4 ] [Chen, Zheng]Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 5650871, Japan
  • [ 5 ] [Matsubara, Yasuko]Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 5650871, Japan
  • [ 6 ] [Sakurai, Yasushi]Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 5650871, Japan
  • [ 7 ] [Yang, Ziwei]Kyoto Univ, Bioinformat Ctr, Kyoto 6158540, Japan

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NANOBIOSCIENCE

ISSN: 1536-1241

年份: 2024

期: 4

卷: 23

页码: 579-590

3 . 9 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:495/4983885
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司