• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yan, Aijun (Yan, Aijun.) (学者:严爱军) | Hu, Kaicheng (Hu, Kaicheng.) | Wang, Dianhui (Wang, Dianhui.) | Tang, Jian (Tang, Jian.)

收录:

EI Scopus SCIE

摘要:

To improve the accuracy and robustness of stochastic configuration networks (SCNs) for resolving multi-target regression tasks, this paper proposes a robust modeling approach based on improved stochastic configuration networks. A parallel implementation of SCN models is designed to incrementally generate the hidden nodes, which enhances the diversity of hidden layer mapping through information superposition and spanning connection. We employ an elastic net regularization model to sparsely constrain the model parameters to characterize the correlation among multiple targets. Then, the mixture Laplace distributions are used as the prior distribution of each target modeling error, and the output weights of the SCN model are re-evaluated by maximizing a posteriori estimation to enhance model's robustness with respect to some uncertainties presented in training samples. The modelling performance of the proposed solution is tested on six standard datasets and the historical data of a municipal solid waste incineration process. The experimental results show that the proposed modeling technique has advantages in terms of both the prediction accuracy and the robustness.

关键词:

Hidden layer parallel construction Stochastic configuration networks Matrix elastic net Robust modeling Multi-target regression

作者机构:

  • [ 1 ] [Yan, Aijun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Kaicheng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yan, Aijun]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 5 ] [Hu, Kaicheng]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 6 ] [Yan, Aijun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 7 ] [Wang, Dianhui]China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China
  • [ 8 ] [Wang, Dianhui]Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
  • [ 9 ] [Wang, Dianhui]La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia

通讯作者信息:

  • [Wang, Dianhui]China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2024

卷: 689

8 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:295/4975438
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司