收录:
摘要:
Purpose: This paper addresses the limitations of current graph neural network-based recommendation systems, which often neglect the integration of side information and the modeling of complex high-order interactions among nodes. The research motivation stems from the need to enhance recommendation performance by effectively utilizing all available data. We propose a novel method called MSHCN, which leverages hypergraph neural networks to integrate side information and model complex interactions, thereby improving user and item representations. Design/methodology/approach: The MSHCN method employs a hypergraph structure to incorporate various types of side information, including social relationships among users and item attributes, which are essential for enriching user and item representations. The k-means clustering algorithm is utilized to create item-associated hypergraphs, while sentiment analysis on user reviews refines the modeling of user interests. Additionally, hypergraphs are constructed for user-user and item-item interactions based on interaction similarity. MSHCN also incorporates contrastive learning as an auxiliary task to enhance the representation learning process. Findings: Extensive experiments demonstrate that MSHCN significantly outperforms existing recommendation models, particularly in its ability to capture and utilize side information and high-order interactions. This results in superior user and item representations and improved recommendation performance. Originality/value: The novelty of MSHCN lies in its use of a hypergraph structure to integrate diverse side information and model intricate high-order interactions. The incorporation of contrastive learning as an auxiliary task sets it apart from other hypergraph-based models, providing a significant enhancement in recommendation accuracy. © 2024, Emerald Publishing Limited.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
International Journal of Intelligent Computing and Cybernetics
ISSN: 1756-378X
年份: 2024
期: 4
卷: 17
页码: 657-670
归属院系: