• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Wenjun (Li, Wenjun.) | Wu, Caiyun (Wu, Caiyun.) | Li, Xinze (Li, Xinze.) | Li, Na (Li, Na.)

收录:

EI Scopus

摘要:

This study investigates the convergence speed and mean square error capability of the Least Mean Square (LMS) adaptive filtering algorithm, presenting a novel approach termed the Fuzzy Variable Learning Rate LMS algorithm based on convex combination. Firstly, in order to enhancing convergence speed, an enhanced LMS algorithm employing variable learning rate based on sine functions, denoted as the Improved Variable Step Size LMS Algorithm based on Sine Function (γ-SLMS), is introduced. Building upon this, to mitigate the steady-state error, the Fuzzy Variable Learning Rate LMS Algorithm based on Mamdani Model (FMS-LMS) is proposed. Finally, utilizing a convex combination framework, the Fuzzy Variable Learning Rate LMS Adaptive Filtering Algorithm Based on Convex Combination (cFMS-LMS) is formulated. Simulation results indicate that the cFMS-LMS algorithm surpasses traditional LMS algorithms in both convergence speed and mean square error. Furthermore, it shows lower computational complexity compared to LMS algorithms utilizing Sugeno fuzzy inference. © 2024 IEEE.

关键词:

Adaptive filters Adaptive algorithms Mean square error Adaptive filtering Wiener filtering Convex optimization

作者机构:

  • [ 1 ] [Li, Wenjun]Shenyang Ligong University, School of Equipment Engineering, Shenyang, China
  • [ 2 ] [Wu, Caiyun]Shenyang Ligong University, School of Equipment Engineering, Shenyang, China
  • [ 3 ] [Li, Xinze]Beijing University of Technology, Machinery and Energy Engineering Institute, Beijing, China
  • [ 4 ] [Li, Na]Shenyang Ligong University, School of Equipment Engineering, Shenyang, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2024

页码: 349-352

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:369/4957345
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司