• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Ruiting (Zhao, Ruiting.) | Ding, Jingru (Ding, Jingru.) | Song, Tianqi (Song, Tianqi.) | Ye, Anqi (Ye, Anqi.)

收录:

EI Scopus

摘要:

This report selects the rice dataset from UCL to compare the performance of several classic classification algorithms in the rice classification task, including linear discriminant analysis, logistic regression, K-nearest neighbor KNN classification, and naive Bayes classification. Through data preprocessing and feature engineering, we run naive Bayes classifiers under different prior distributions and analyze the classification results in detail. In addition, we select evaluation criteria such as accuracy, precision, recall, and F1 score to compare and discuss the effectiveness of each classification algorithm. The final results show that the choice of different prior distributions also has a certain impact on the classification results, and the classification effects of linear discriminant analysis, logistic regression, and Gaussian Bayes are better. This article details the experimental process and results analysis, providing some reference value for how to classify rice. © 2024 SPIE.

关键词:

Nearest neighbor search Logistic regression Adversarial machine learning Precision engineering Contrastive Learning

作者机构:

  • [ 1 ] [Zhao, Ruiting]School of Mathematics Statistics and Mechanics, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Ding, Jingru]School of Mathematics Statistics and Mechanics, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Song, Tianqi]Beijing-Dublin International College, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Ye, Anqi]School of Mathematics Statistics and Mechanics, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2024

卷: 13281

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:296/4974876
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司