• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Mingming (Zhao, Mingming.) | Wang, Ding (Wang, Ding.) (学者:王鼎) | Song, Shijie (Song, Shijie.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

This article develops a novel data-driven safe Q-learning method to design the safe optimal controller which can guarantee constrained states of nonlinear systems always stay in the safe region while providing an optimal performance. First, we design an augmented utility function consisting of an adjustable positive definite control obstacle function and a quadratic form of the next state to ensure the safety and optimality. Second, by exploiting a pre-designed admissible policy for initialization, an off-policy stabilizing value iteration Q-learning (SVIQL) algorithm is presented to seek the safe optimal policy by using offline data within the safe region rather than the mathematical model. Third, the monotonicity, safety, and optimality of the SVIQL algorithm are theoretically proven. To obtain the initial admissible policy for SVIQL, an offline VIQL algorithm with zero initialization is constructed and a new admissibility criterion is established for immature iterative policies. Moreover, the critic and action networks with precise approximation ability are established to promote the operation of VIQL and SVIQL algorithms. Finally, three simulation experiments are conducted to demonstrate the virtue and superiority of the developed safe Q-learning method.

关键词:

Adaptive critic control Optimal control Safety Mathematical models stabilizing value iteration Q-learning (SVIQL) Heuristic algorithms Learning systems adaptive dynamic programming (ADP) control barrier functions (CBF) state constraints Q-learning Iterative methods

作者机构:

  • [ 1 ] [Zhao, Mingming]Beijing Univ Technol, Sch Informat Sci & Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Ding]Beijing Univ Technol, Sch Informat Sci & Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Sch Informat Sci & Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Mingming]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 7 ] [Song, Shijie]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China

通讯作者信息:

  • [Qiao, Junfei]Beijing Univ Technol, Sch Informat Sci & Technol, Beijing Lab Smart Environm Protect, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China;;[Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE-CAA JOURNAL OF AUTOMATICA SINICA

ISSN: 2329-9266

年份: 2024

期: 12

卷: 11

页码: 2408-2422

1 1 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:485/4961625
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司