• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Qunbo (Wang, Qunbo.) | Zhang, Hangu (Zhang, Hangu.) | Zhang, Wentao (Zhang, Wentao.) | Dai, Lin (Dai, Lin.) | Liang, Yu (Liang, Yu.) | Shi, Haobin (Shi, Haobin.)

收录:

Scopus SCIE

摘要:

Given a set of labels, multi-label text classification (MLTC) aims to assign multiple relevant labels for a text. Recently, deep learning models get inspiring results in MLTC. Training a high-quality deep MLTC model typically demands large-scale labeled data. And comparing with annotations for single-label data samples, annotations for multi-label samples are typically more time-consuming and expensive. Active learning can enable a classification model to achieve optimal prediction performance using fewer labeled samples. Although active learning has been considered for deep learning models, there are few studies on active learning for deep multi-label classification models. In this work, for the deep MLTC model, we propose a deep Active Learning method based on Bayesian deep learning and Expected confidence (BEAL). It adopts Bayesian deep learning to derive the deep model's posterior predictive distribution and defines a new expected confidence-based acquisition function to select uncertain samples for deep MLTC model training. Moreover, we perform experiments with a BERT-based MLTC model, where BERT can achieve satisfactory performance by fine-tuning in various classification tasks. The results on benchmark datasets demonstrate that BEAL enables more efficient model training, allowing the deep model to achieve training convergence with fewer labeled samples.

关键词:

作者机构:

  • [ 1 ] [Wang, Qunbo]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
  • [ 2 ] [Zhang, Hangu]Northwestern Polytech Univ, Xian 710129, Peoples R China
  • [ 3 ] [Zhang, Wentao]Northwestern Polytech Univ, Xian 710129, Peoples R China
  • [ 4 ] [Dai, Lin]Northwestern Polytech Univ, Xian 710129, Peoples R China
  • [ 5 ] [Shi, Haobin]Northwestern Polytech Univ, Xian 710129, Peoples R China
  • [ 6 ] [Liang, Yu]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Shi, Haobin]Northwestern Polytech Univ, Xian 710129, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SCIENTIFIC REPORTS

ISSN: 2045-2322

年份: 2024

期: 1

卷: 14

4 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:372/4973101
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司