• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cui, Lingli (Cui, Lingli.) | Shen, Qiang (Shen, Qiang.) | Xiao, Yongchang (Xiao, Yongchang.) | Liu, Dongdong (Liu, Dongdong.) | Wang, Huaqing (Wang, Huaqing.)

收录:

EI Scopus SCIE

摘要:

Effective prediction of machinery remaining useful life (RUL) is prominent to achieve intelligent preventive maintenance in manufacturing systems. In this paper, a sparse graph structure fusion convolutional network (SGSFCN) is proposed for more accurate end-to-end RUL prediction of machine. A novel node-level graph structure called time series shapelet distance graph (TSSDG) is designed to convert the time series to node feature. The SGSFCN model is proposed to learn degradation information from the graph structure. In SGSFCN, a sparse graph structure (SGS) layer and a fusion graph structure (FGS) layer preceding the graph convolutional network (GCN) are designed to learn the SGS from node representation and fuse the original graph structure, enabling the graph structure and node update iteratively in subsequent layers. Concurrently, a bidirectional long short-term memory network (BiLSTM) layer is integrated to capture the global temporal dependencies. The method is validated by two test rig data, and results demonstrate that the proposed method offers significantly higher prediction accuracy of RUL compared to several state-of-art methods.

关键词:

Sparse graph structure Rotating machinery Graph network Remaining useful life

作者机构:

  • [ 1 ] [Cui, Lingli]Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
  • [ 2 ] [Shen, Qiang]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xiao, Yongchang]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Dongdong]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Huaqing]Beijing Univ Chem Technol, Sch Mech & Elect Engn, Beijing 100129, Peoples R China

通讯作者信息:

  • [Liu, Dongdong]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China;;[Wang, Huaqing]Beijing Univ Chem Technol, Sch Mech & Elect Engn, Beijing 100129, Peoples R China

查看成果更多字段

相关关键词:

来源 :

RELIABILITY ENGINEERING & SYSTEM SAFETY

ISSN: 0951-8320

年份: 2024

卷: 254

8 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:610/4958253
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司