• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Yi (Guo, Yi.) | Gao, Jingfeng (Gao, Jingfeng.) (学者:高景峰) | Zhang, Yi (Zhang, Yi.) | Xie, Tian (Xie, Tian.) | Wang, Qian (Wang, Qian.) | An, Jiawen (An, Jiawen.)

收录:

EI Scopus SCIE

摘要:

The capacity and mechanism of heterotrophic nitrification-aerobic denitrification (HNAD) strain (H1) to remove carbon, nitrogen, disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) were investigated in this study. PCMX was removed via metabolism and chemical oxygen demand co-metabolism process. BEC was eliminated through bacterial adsorption, which greatly inhibited the removal of other pollutants. Carbon source optimization tests revealed that glucose was the optimal carbon source for co-removal of pollutants under mixed disinfectants circumstances (PCMX + BEC). Comparing the groups without (G1) and with disinfectants (G2), the content of extracellular polymeric substances was higher, and hydrophobicity was enhanced under the hazardous conditions of G2. All the nitrogen metabolism functional genes in G2 were up-regulated, and the electron transport system activity was also improved. At the same time, G2 had lower reactive oxygen species content, which reduced the probability of resistance genes dissemination, but the abundance of most quantified resistance genes was elevated in G2. Toxicity assessment assays found a dramatic reduction in the virulence of G2's effluent compared with the mixed disinfectants. The results confirmed that H1 strain could be used to treat the disinfectant-containing wastewater, which may aid in the application of HNAD process.

关键词:

Extracellular polymeric substances Heterotrophic nitrification-aerobic denitrifica- Resistance genes Co-metabolism Mixed disinfectants tion

作者机构:

  • [ 1 ] [Guo, Yi]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Jingfeng]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Yi]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Xie, Tian]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Qian]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [An, Jiawen]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

通讯作者信息:

  • 高景峰

    [Gao, Jingfeng]Beijing Univ Technol, Dept Environm Engn, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF HAZARDOUS MATERIALS

ISSN: 0304-3894

年份: 2024

卷: 480

1 3 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:613/4949138
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司