• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cheng, Wenxiu (Cheng, Wenxiu.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Xu, Xi (Xu, Xi.) | Peng, Haoran (Peng, Haoran.) | Zhao, Linna (Zhao, Linna.) | Liu, Suqin (Liu, Suqin.) | Zhu, Chujie (Zhu, Chujie.) | Xu, Fujiu (Xu, Fujiu.)

收录:

CPCI-S EI Scopus

摘要:

Non-invasive fundus images can be used to diagnose various fundus diseases, such as high myopia (HM). Existing deep learning-based research mainly relies on data to drive the model to learn key features. However, the data related to HM is limited (especially for young children), making it difficult for deep networks to accurately focus on key features. Hence, we propose a prior knowledge-guided deep learning network for pediatric HM detection. It comprises four modules: (1) Prior Feature-Based Channel Fusion: This module extracts key features (brightness, edges, texture) from fundus images using image processing methods to obtain corresponding single-channel slices. Through channel-level feature fusion, these slices are used to construct multiple sets of feature-enhanced datasets. (2) Global Fundus Feature Extraction: It uses residual blocks to build the backbone, and builds a U-shaped attention component based on the U-shaped network. This module extracts the global and context information of the original fundus image to obtain a global feature map. (3) Knowledge-Guided Attention Generation: The residual structure is employed to further extract the hidden features of the feature-enhanced data, thereby obtaining local key feature maps. (4) Pediatric HM Classification: By combining local key feature maps (obtained in module 3) with global feature maps (obtained in module 2) through spatial attention mechanism, the deep network is guided to complete the classification task of pediatric HM. Extensive experiments on real-world datasets demonstrate the effectiveness of our method (accuracy is 0.921, F1 score is 0.903).

关键词:

deep learning knowledge guidance fundus images pediatric high myopia diagnosis

作者机构:

  • [ 1 ] [Cheng, Wenxiu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Haoran]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhao, Linna]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Suqin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Zhu, Chujie]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Xu, Fujiu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xu, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024

ISSN: 2836-3787

年份: 2024

页码: 2113-2118

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:244/4897923
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司