• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Jingxiang (Xu, Jingxiang.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Li, Juan (Li, Juan.) | Zhao, Linna (Zhao, Linna.) | Ding, Shujie (Ding, Shujie.)

收录:

CPCI-S EI Scopus

摘要:

At the end of 2019, the COVID-19 outbreak emerged abruptly. Chinese health authorities highlighted the role of CT scans, X-rays, and other computerized lung imaging in aiding COVID-19 diagnosis. This study aims to develop a computer-based system to assist healthcare professionals in diagnosing COVID-19 infections based on computerized imaging analysis. This approach aims to alleviate the workload of COVID-19 specialists, improving diagnostic and treatment efficiency and allowing specialists to focus on devising appropriate patient care plans promptly. The proposed method focuses on analyzing COVID-19 lesion characteristics within individual CT slices and their serial characteristics across CT sequences. This approach mirrors the diagnostic process of radiologists closely. To validate our model, we compiled a dataset from real medical diagnostic settings, minimizing the impact of lesion-like artifacts. We conducted a series of comparative and ablation experiments to evaluate the model's performance. Results indicate that our model outperforms the classic classification models and other commonly used models for COVID-19 diagnosis on our constructed dataset.

关键词:

COVID-19 automated diagnosis Attention mechanism Lung CT images Image sequence classification

作者机构:

  • [ 1 ] [Xu, Jingxiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhao, Linna]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Ding, Shujie]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Xu, Jingxiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024

ISSN: 2836-3787

年份: 2024

页码: 2159-2164

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:71/4829887
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司