• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xi, Kaibiao (Xi, Kaibiao.) | Guo, Jianzhe (Guo, Jianzhe.) | Zheng, Mupeng (Zheng, Mupeng.) | Zhu, Mankang (Zhu, Mankang.) | Hou, Yudong (Hou, Yudong.) (学者:侯育冬)

收录:

EI Scopus SCIE

摘要:

High temperature piezoelectric energy harvester (HT-PEH) is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors. However, simultaneously excellent performances, including high figure of merit (FOM), insulation resistivity (rho) and depolarization temperature (T-d) are indispensable but hard to achieve in lead-free piezoceramics, especially operating at 250 degrees C has not been reported before. Herein, well-balanced performances are achieved in BiFeO3-BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping. Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization, regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole, comprehensive excellent electrical performances (T-d = 340 degrees C, rho(250) (degrees C) > 10(7) Omega cm and FOM2(50 degrees C) = 4905 x 10(-15 )m(2) N-1) are realized at the solid solubility limit of manganese ions. The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250 degrees C with high energy conversion efficiency (eta = 11.43%). These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements, paving a new way in developing self-powered wireless sensors working in HT environments.

关键词:

Piezoelectric energy harvester Lead-free piezoceramic Dopants modulation High-temperature Defect engineering

作者机构:

  • [ 1 ] [Xi, Kaibiao]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Jianzhe]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zheng, Mupeng]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Mankang]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Hou, Yudong]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • 侯育冬

    [Hou, Yudong]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NANO-MICRO LETTERS

ISSN: 2311-6706

年份: 2025

期: 1

卷: 17

2 6 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:465/4978862
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司