• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhai, Jiahui (Zhai, Jiahui.) | Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.) | Wang, Mengyuan (Wang, Mengyuan.) | Zhang, Jia (Zhang, Jia.) | Wang, Yebing (Wang, Yebing.) | Zhou, Mengchu (Zhou, Mengchu.)

收录:

EI Scopus SCIE

摘要:

Hybrid cloud-edge systems combine the advantages of cloud computing and mobile edge computing (MEC) to achieve flexible integration and fluidity of data between the cloud and the edge. To address dynamic and stochastic loads caused by mobile users (MUs) and time-varying tasks, MEC network operators need to continuously migrate installed services among edge servers, significantly increasing network maintenance costs. Existing studies often overlook the service migration cost resulting from MU mobility. Therefore, we present a joint optimization scheme focusing on minimizing the operational cost of hybrid cloud-edge systems while considering the dynamic service migration cost induced by MUs. With the rapid development of 5G/6G technologies, many MUs require connectivity to edge nodes (ENs) or cloud data centers (CDCs) for processing. Minimizing the operational cost of hybrid cloud-edge systems while considering many heterogeneous decision variables is a challenge. To solve this complex high-dimensional mixed-integer nonlinear problem, we develop a novel deep learning-based evolutionary algorithm called autoencoder-based multiswarm gray wolf optimizer based on genetic learning (AMGG). Experimental results with real data demonstrate that AMGG achieves lower system cost by 49.69% while strictly meeting task latency requirements of MUs compared with state-of-the-art algorithms.

关键词:

mobile edge computing (MEC) high-dimensional optimization algorithms service migration Servers Costs Microservice architectures Quality of service Autoencoders gray wolf optimizer (GWO) Optimization Cloud computing Routing

作者机构:

  • [ 1 ] [Zhai, Jiahui]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Bi, Jing]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 4 ] [Wang, Mengyuan]Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
  • [ 5 ] [Zhang, Jia]Southern Methodist Univ, Dept Comp Sci, Dallas, TX 75206 USA
  • [ 6 ] [Wang, Yebing]Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
  • [ 7 ] [Zhou, Mengchu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA

通讯作者信息:

  • [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE INTERNET OF THINGS JOURNAL

ISSN: 2327-4662

年份: 2024

期: 24

卷: 11

页码: 40951-40967

1 0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:502/4941093
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司