• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Wen (Xu, Wen.) | Tang, Jian (Tang, Jian.) (学者:汤健) | Xia, Heng (Xia, Heng.) | Yu, Wen (Yu, Wen.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

Municipal solid waste incineration (MSWI) is the most widely used waste treatment technology worldwide. Dioxin (DXN), one of the by-products of the MSWI process, is by far the most toxic contaminant. Labeled samples are extremely limited for constructing its soft sensor measurement model because offline DXN detection takes considerable amount of time and cost. In addition, the number of pseudo-label samples and the optimization of hyperparameters in semi-supervised models is a challenging problem. A multi-objective particle swarm optimization (PSO) semi-supervised random forest (RF) algorithm is proposed in this paper for DXN emission concentration measurement. First, the coding design of the selected hyperparameter value and pseudo-labeled samples is realized for the semi-supervised algorithm oriented to hybrid optimization. Subsequently, the particles are initialized and decoded to evaluate the fitness of the model-oriented generalization performance and the number of pseudo-labeled samples. The termination condition of optimization is then assessed. If the condition is unsatisfied, then the decision variable of multi-objective PSO is updated. Otherwise, the Pareto solution set is used to determine the optimal solution. Finally, the RF model is constructed on the basis of optimal mixed samples. The effectiveness of the proposed method is verified by using benchmark and actual MSWI process datasets.

关键词:

Dioxin (DXN) Semi-supervised learning Pseudo-labeled samples Random forest Multi-objective particle swarm optimization Municipal solid waste incineration (MSWI)

作者机构:

  • [ 1 ] [Xu, Wen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xia, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Xu, Wen]Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 6 ] [Tang, Jian]Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 7 ] [Xia, Heng]Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 9 ] [Xu, Wen]Minist Educ, Engn Res Ctr Intelligence Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 10 ] [Tang, Jian]Minist Educ, Engn Res Ctr Intelligence Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 11 ] [Xia, Heng]Minist Educ, Engn Res Ctr Intelligence Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 12 ] [Qiao, Junfei]Minist Educ, Engn Res Ctr Intelligence Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 13 ] [Xu, Wen]Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 14 ] [Tang, Jian]Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 15 ] [Xia, Heng]Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 16 ] [Qiao, Junfei]Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 17 ] [Yu, Wen]CINVESTAV IPN, Natl Polytech Inst, Dept Control Automat, Mexico City 07360, Mexico

通讯作者信息:

  • 汤健

    [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

ISSN: 0952-1976

年份: 2024

卷: 135

8 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:657/4949405
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司