• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Huawang (Zhang, Huawang.) | Wang, Jin (Wang, Jin.) | Shi, Yunhui (Shi, Yunhui.)

收录:

EI Scopus

摘要:

As machine learning continues to improve the performance of image compression, there is a high demand for deep learning-based image compression algorithms. The first generation of deep learning-based image compression standard, JPEG AI, has emerged. Compared to the linear transform methods in traditional compression frameworks, deep learning-based image compression codecs use non-linear transform to extract visual features ranging from low to high levels in a large number of training samples, thereby achieving much higher compression performance. JPEG AI aims to explore image encoding methods that are more efficient than existing image codecs. In the JPEG AI official verification model, the Content Adaptive Inter-Channel Correlation Information (ICCI) subnetwork is used to reconstruct compressed images to achieve higher quality, but the complexity and parameter number of this subnetwork are relatively high. To solve this problem, we propose a simplified ICCI (sICCI) based on the Y, U, and V components. Compared to the standard ICCI module in JPEG AI and its lightweight version eICCI, our proposed sICCI significantly reduces network complexity and model parameters while keeping competitive image reconstruction quality. © 2024 SPIE.

关键词:

Linear transformations Image compression Image quality Image reconstruction Image coding Image enhancement

作者机构:

  • [ 1 ] [Zhang, Huawang]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Wang, Jin]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Shi, Yunhui]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2024

卷: 13274

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:487/4940603
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司