• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, L. (Liu, L..) | Jiao, Y. (Jiao, Y..) | Li, X. (Li, X..) | Li, J. (Li, J..) | Wang, H. (Wang, H..) | Cao, X. (Cao, X..)

收录:

Scopus

摘要:

The objective of image captioning is to empower computers to generate human-like sentences autonomously, describing a provided image. To tackle the challenges of insufficient accuracy in image feature extraction and underutilization of visual information, we present a Swin Transformer-based model for image captioning with feature enhancement and multi-stage fusion (Swin-Caption). Initially, the Swin Transformer is employed in the capacity of an encoder for extracting images, while feature enhancement is adopted to gather additional image feature information. Subsequently, a multi-stage image and semantic fusion module is constructed to utilize the semantic information from past time steps. Lastly, a two-layer LSTM is utilized to decode semantic and image data, generating captions. The proposed model outperforms the baseline model in experimental tests and instance analysis on the public datasets Flickr8K, Flickr30K, and MS-COCO. © 2024 World Scientific Publishing Europe Ltd.

关键词:

image captioning swin transformer attention mechanism Deep learning LSTM

作者机构:

  • [ 1 ] [Liu L.]Faculty of Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Liu L.]Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, China
  • [ 3 ] [Jiao Y.]Faculty of Science, Beijing University of Technology, Beijing, China
  • [ 4 ] [Li X.]Faculty of Science, Beijing University of Technology, Beijing, China
  • [ 5 ] [Li J.]Faculty of Science, Beijing University of Technology, Beijing, China
  • [ 6 ] [Wang H.]Fundamental Standardization, China National Institute of Standardization, Beijing, China
  • [ 7 ] [Cao X.]Fundamental Standardization, China National Institute of Standardization, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

International Journal of Computational Intelligence and Applications

ISSN: 1469-0268

年份: 2024

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:360/4973339
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司