收录:
摘要:
The objective of image captioning is to empower computers to generate human-like sentences autonomously, describing a provided image. To tackle the challenges of insufficient accuracy in image feature extraction and underutilization of visual information, we present a Swin Transformer-based model for image captioning with feature enhancement and multi-stage fusion (Swin-Caption). Initially, the Swin Transformer is employed in the capacity of an encoder for extracting images, while feature enhancement is adopted to gather additional image feature information. Subsequently, a multi-stage image and semantic fusion module is constructed to utilize the semantic information from past time steps. Lastly, a two-layer LSTM is utilized to decode semantic and image data, generating captions. The proposed model outperforms the baseline model in experimental tests and instance analysis on the public datasets Flickr8K, Flickr30K, and MS-COCO. © 2024 World Scientific Publishing Europe Ltd.
关键词:
通讯作者信息:
电子邮件地址: