• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cheng, Shuping (Cheng, Shuping.) | Zhang, Lu (Zhang, Lu.) | Tan, Jianjun (Tan, Jianjun.) | Gong, Weikang (Gong, Weikang.) | Li, Chunhua (Li, Chunhua.) | Zhang, Xiaoyi (Zhang, Xiaoyi.)

收录:

EI Scopus SCIE PubMed

摘要:

ncRNA-protein interactions (ncRPIs) play an important role in a number of cellular processes, such as post-transcriptional modification, transcriptional regulation, disease progression and development. Since experimental methods are expensive and time-consuming to identify the ncRPIs, we proposed a computational method, Deep Mining ncRNA-Protein Interactions (DM-RPIs), for identifying the ncRPIs. In order to descending dimension and excavating hidden information from k-mer frequency of RNA and protein sequences, using the Deep Stacking Auto-encoders Networks (DSANs) model refined the raw data. Three common machine learning algorithms, Support Vector Machine (SVM), Random Forest (RF), and Convolution Neural Network (CNN), were separately trained as individual predictors and then the three individual predictors were integrated together using stacked ensembling strategy. Based on the RPI2241 dataset, DM-RPI obtains an accuracy of 0.851, precision of 0.852, sensitivity of 0.873, specificity of 0.826, and MCC of 0.701, which is promising and pioneering for the prediction of ncRPIs.

关键词:

Random Forest (RF) ncRNA-protein interactions Deep Stacking Auto-encoders Networks (DSANs) Convolution Neural Network (CNN) Support Vector Machine (SVM) Stacked integrate

作者机构:

  • [ 1 ] [Cheng, Shuping]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Lu]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China
  • [ 3 ] [Tan, Jianjun]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China
  • [ 4 ] [Gong, Weikang]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Chunhua]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Xiaoyi]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China

通讯作者信息:

  • [Tan, Jianjun]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Int Base Sci & Technol Cooperat, Intelligent Physiol Measurement & Clin Translat, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMPUTATIONAL BIOLOGY AND CHEMISTRY

ISSN: 1476-9271

年份: 2019

卷: 83

3 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:3

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:437/3891038
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司