• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Yuan (Meng, Yuan.) | Tu, Shanshan (Tu, Shanshan.) | Yu, Jinliang (Yu, Jinliang.) | Huang, Fengming (Huang, Fengming.)

收录:

EI Scopus SCIE

摘要:

Fog computing is a technology that can expands the network computing mode of cloud computing and extends network computing from the network center to the network edge. It adds fog layer between cloud data center layer and Internet of Things (IoT) device layer, and provides data storage, processing, forwarding and other functions for devices using the network edge. In mobile fog computing (MFC) networks, fog nodes communicate with end users through wireless networks. Malicious users can choose different attack modes to attack legitimate users. There is a lack of research on the subjective choice of attack modes for malicious users in current work. To solve this problem, an intelligent attack defense scheme based on Double Q-learning (DQL) algorithm in MFC is proposed. Firstly, the security model involving malicious users in MFC is described. Based on Prospect Theory (PT), a static method of subjective zero-sum game between malicious users and legitimate users is constructed. Secondly, a dynamic subjective game scheme based on DQL algorithm is proposed to resist intelligent attacks. The simulation results show that compared with the Q-learning-based method for resisting intelligent attacks, the proposed method can enhance the security of MFC network and enhance the protection performance. (C) 2019 Elsevier Inc. All rights reserved.

关键词:

Moving fog computing Prospect theory Intelligent attack Reinforcement learning Physical layer security

作者机构:

  • [ 1 ] [Meng, Yuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yu, Jinliang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Huang, Fengming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Meng, Yuan]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 6 ] [Tu, Shanshan]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China

通讯作者信息:

  • [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2019

卷: 65

2 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:2

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1303/3896163
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司