• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Shaopeng (Xu, Shaopeng.) | Han, Honggui (Han, Honggui.) (学者:韩红桂) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

Sludge volume index(SVI), a key sludge sedimentation performance evaluation index, is difficult to be obtained accurately online and the conventional approaches are time-consuming, tedious and complicated. A new recurrent fuzzy neural network(HRFNN) method is proposed in this paper to predict the evolution of the sludge volume index(SVI). HRFNN is constructed by adding feedback connections with the internal variable in the third layer of the fuzzy neural network, so it achieves output information feedback. Finally, the results of simulation indicate the efficiency of the modeling method. And compared with other fuzzy neural networks, the scale of network can be simplified and its capability of dealing with dynamic information can be strengthened, it also has better accuracy. © All Rights Reserved.

关键词:

Activated sludge process Fuzzy inference Fuzzy logic Fuzzy neural networks Multilayer neural networks Recurrent neural networks Sewage sludge Wastewater treatment

作者机构:

  • [ 1 ] [Xu, Shaopeng]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Han, Honggui]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Qiao, Junfei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CIESC Journal

ISSN: 0438-1157

年份: 2013

期: 12

卷: 64

页码: 4550-4556

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1079/3631171
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司