• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xiuzhi (Li, Xiuzhi.) | Yin, Xiaolin (Yin, Xiaolin.) | Jia, Songmin (Jia, Songmin.) (学者:贾松敏) | Tan, Jun (Tan, Jun.) | Zhao, Guanrong (Zhao, Guanrong.)

收录:

EI Scopus PKU CSCD

摘要:

An optical flow method combining Gaussian convoluted data term with non-local median filter is proposed to remove noise and consequently improve the robustness and accuracy of the optical flow estimation. Robust L1 norm is employed for construction of data term, which is smoothed with Gaussian filter to suppress noise, and primal-dual method is introduced to improve the estimation efficiency of variational optical flow. A global optimization strategy based on non-local median filter is used to further enhance the estimation accuracy. The coarse-to-fine pyramid technique is employed to improve the adaptability of the algorithm for large displacements estimation. The proposed method is evaluated by using both the Middlebury optical flow database images and real scene images. The experimental results show that the proposed method performs good robustness and accuracy in contrast with traditional TV-L1 model algorithms.

关键词:

Computer vision Global optimization Median filters Optical flows Passive filters

作者机构:

  • [ 1 ] [Li, Xiuzhi]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Yin, Xiaolin]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Jia, Songmin]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Tan, Jun]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Zhao, Guanrong]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Optica Sinica

ISSN: 0253-2239

年份: 2013

期: 10

卷: 33

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:95/3269856
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司