• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chai, Wei (Chai, Wei.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus

摘要:

A modelling method is proposed and applied in fault detection for non-linear dynamic systems with bounded noises. Since the radial basis function (RBF) neural network is a universal approximator, it is used to model the non-linear system when the system runs without a fault. After some input and output data of the system are obtained, the centres of the hidden nodes are chosen using clustering technology. Assuming that the system noise and approximation error are unknown but bounded, the output weights of RBF neural network model of the system are determined by a linear-in-parameter set membership estimation algorithm. An interval containing the actual output of the system running without a fault can be easily predicted based on the result of the estimation. If the measured output is out of the predicted interval, it can be determined that a fault has occurred. Simulation results show the effectiveness of the proposed method. Copyright © 2013 Inderscience Enterprises Ltd.

关键词:

Approximation algorithms Fault detection Identification (control systems) Linear control systems Linear systems Nonlinear systems Radial basis function networks Religious buildings

作者机构:

  • [ 1 ] [Chai, Wei]School of Electronic Information and Control Engineering, Beijing University of Technology, Chaoyang, Beijing, 100124, China
  • [ 2 ] [Qiao, Junfei]School of Electronic Information and Control Engineering, Beijing University of Technology, Chaoyang, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

International Journal of Modelling, Identification and Control

ISSN: 1746-6172

年份: 2013

期: 2

卷: 20

页码: 114-120

ESI学科: ENGINEERING;

ESI高被引阀值:131

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:644/3616524
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司