• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cao, Dongxing (Cao, Dongxing.) (学者:曹东兴) | Xia, Wei (Xia, Wei.) | Hu, Wenhua (Hu, Wenhua.)

收录:

SCIE CSCD

摘要:

Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester (VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First, the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory. Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 W of the layer-separated VEH is about 3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment.

关键词:

vibration energy harvester (VEH) low-frequency O242 broad-bandwidth layer-separated piezoelectric beam

作者机构:

  • [ 1 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Xia, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Cao, Dongxing]Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Xia, Wei]Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 5 ] [Hu, Wenhua]Tianjin Univ Technol, Sch Mech Engn, Tianjin 300384, Peoples R China

通讯作者信息:

  • 曹东兴

    [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China;;[Cao, Dongxing]Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION

ISSN: 0253-4827

年份: 2019

期: 12

卷: 40

页码: 1777-1790

4 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:85/4741298
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司