• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Cao, Dongxing (Cao, Dongxing.) (Scholars:曹东兴) | Xia, Wei (Xia, Wei.) | Hu, Wenhua (Hu, Wenhua.)

Indexed by:

SCIE CSCD

Abstract:

Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester (VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First, the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory. Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 W of the layer-separated VEH is about 3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment.

Keyword:

vibration energy harvester (VEH) low-frequency O242 broad-bandwidth layer-separated piezoelectric beam

Author Community:

  • [ 1 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Xia, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Cao, Dongxing]Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Xia, Wei]Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 5 ] [Hu, Wenhua]Tianjin Univ Technol, Sch Mech Engn, Tianjin 300384, Peoples R China

Reprint Author's Address:

  • 曹东兴

    [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China;;[Cao, Dongxing]Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION

ISSN: 0253-4827

Year: 2019

Issue: 12

Volume: 40

Page: 1777-1790

4 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 22

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:311/5276143
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.