• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Pan, Guangyuan (Pan, Guangyuan.) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus SCIE

摘要:

The problem of over fitting in DBN is extensively focused on since different networks may respond differently to an unknown input. In this study, a regularization-reinforced deep belief network (RrDBN) is proposed to improve generalization ability. In RrDBN, a special regularization-reinforced term is developed to make the weights in the unsupervised training process to attain a minimum magnitude. Then, the non-contributing weights are reduced and the resultant network can represent the inter-relations of the input-output characteristics. Therefore, the optimization process is able to obtain the minimum-magnitude weights of RrDBN. Moreover, contrastive divergence is introduced to increase RrDBN's convergence speed. Finally, RrDBN is applied to hand-written numbers classification and water quality prediction. The results of the experiments show that RrDBN can improve the recognition performance with less recognition errors than other existing methods.

关键词:

Recognition Regularization Generalization Deep belief net

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Post Box 1305,100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Pan, Guangyuan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Post Box 1305,100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Honggui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Post Box 1305,100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Post Box 1305,100 Pingleyuan, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NATURAL COMPUTING

ISSN: 1567-7818

年份: 2019

期: 4

卷: 18

页码: 721-733

2 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:2

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:153/4273894
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司