• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cao, Shenbin (Cao, Shenbin.) | Du, Rui (Du, Rui.) | Zhang, Hanyu (Zhang, Hanyu.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI Scopus SCIE PubMed

摘要:

Partial-denitrification (PD) has previously been demonstrated to be another pathway for nitrite production, which provides a cost-effective approach for nitrate (NO3--N) removal through combing with anammox. In this study, the formation of PD granules was firstly investigated in a sequencing batch reactor (SBR) with influent nitrate of 60 mg N/L. The granulation process was explored via the physicochemical and biological characterization. Sludge granulation initiated within the first 20 days with an average size of 93.7 mu m in diameter, it experienced a developing, shaping and matured periods, with a maximum size of 709.3 mu m obtained. High nitrite production of PD was always maintained during the granulation with a mean nitrate-to-nitrite transformation ratio (NTR) of 88.3%, and in-situ maximum NO3-N reduction rate of 84.9 mg N/h/g VSS was obtained. Mature PD granules hold an excellent settling property with 5-min sludge volume index (SVI5) of 32.0 mL/g MLSS obtained and smooth surface with large amounts of rod bacteria covered. CaCO3 precipitates formed in the PD process played a vital role in the initial granulation, acting as the nucleus for cell attachment. Extracellular polymeric substances (EPS), mainly the proteins (PN) content, was found to be of supreme importance in granules developing and maintaining its structural stability. Besides, the abundance of Flavobacterium and norank_p_-Gracilibacteria were revealed to be in accordance with the change of granules size, seemed to contribute to sludge granulation. The developed granule-based PD integrated with anammox process provides an engineering-feasible and economic-favorable solution for industrial nitrate wastewater treatment. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

CaCO3 precipitates Extracellular polymeric substances (EPS) Granulation Nitrite production Partial-denitrification (PD)

作者机构:

  • [ 1 ] [Cao, Shenbin]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
  • [ 3 ] [Cao, Shenbin]Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Adv Environm Biotechnol Ctr, 1 Cleantech Loop, Singapore 637141, Singapore
  • [ 4 ] [Du, Rui]Beijing Univ Technol, Engn & Technol Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Hanyu]Beijing Univ Technol, Engn & Technol Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Engn & Technol Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOSPHERE

ISSN: 0045-6535

年份: 2019

卷: 236

8 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:57

JCR分区:1

被引次数:

WoS核心集被引频次: 36

SCOPUS被引频次: 44

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:4909/2937464
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司