• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jinghua (Li, Jinghua.) | Huai, Huarui (Huai, Huarui.) | Gao, Junbin (Gao, Junbin.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Wang, Lichun (Wang, Lichun.) (学者:王立春)

收录:

EI Scopus SCIE

摘要:

Hand gesture is a kind of natural interaction way and hand gesture recognition has recently become more and more popular in human-computer interaction. However, the complexity and variations of hand gesture like various illuminations, views, and self-structural characteristics make the hand gesture recognition still challengeable. How to design an appropriate feature representation and classifier are the core problems. To this end, this paper develops an expressive deep hybrid hand gesture recognition architecture called CNN-MVRBM-NN. The framework consists of three submodels. The CNN submodel automatically extracts frame-level spatial features, and the MVRBM submodel fuses spatial information over time for training higher level semantics inherent in hand gesture, while the NN submodel classifies hand gesture, which is initialized by MVRBM for second order data representation, and then such NN pre-trained by MVRBM can be fine-tuned by back propagation so as to be more discriminative. The experimental results on Cambridge Hand Gesture Data set show the proposed hybrid CNN-MVRBM-NN has obtained the state-of-the-art recognition performance.

关键词:

Neural network (NN) Matrix variate restricted Boltzmann machine (MVRBM) Hand gesture recognition Convolutional neural networks (CNN)

作者机构:

  • [ 1 ] [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Huai, Huarui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Lichun]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Junbin]Univ Sydney, Sch Business, Discipline Business Analyt, Sydney, NSW 2006, Australia

通讯作者信息:

  • [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL ON MULTIMODAL USER INTERFACES

ISSN: 1783-7677

年份: 2019

期: 4

卷: 13

页码: 363-371

2 . 9 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:3

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:228/4519407
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司