收录:
摘要:
We consider statistical inference for additive partial linear models when the linear covariate is measured with error. A bias-corrected spline-backfitted kernel smoothing method is proposed. Under mild assumptions, the proposed component function and parameter estimator are oracally efficient and fast to compute. The nonparametric function estimator's pointwise distribution is asymptotically equivalent to an function estimator in partial linear model. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are applied to Boston house data set.
关键词:
通讯作者信息:
电子邮件地址: