• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Mingru (Zhao, Mingru.) | Tang, Hengliang (Tang, Hengliang.) | Guo, Jian (Guo, Jian.) | Sun, Yuan (Sun, Yuan.)

收录:

EI Scopus

摘要:

Data clustering is a popular approach for automatically finding classes or groups of patterns. In recent years, data clustering is still a popular analysis tool for data statistics to identify some inherent structures that presents in the objects. In this paper, in order to improve the convergence and global searching capacity of particle swarm optimization(PSO) in solving data clustering ,an improved particle swarm optimization clustering algorithm (EPSOK) based on reproductive strategy is presented. In the algorithm, the best particles in the search process reproduce, at the same time, the worst particles disappear. Through comparing with the classical K-Means algorithm, the improved algorithm has obvious advantages in the experiments. © 2013 by CESER Publications.

关键词:

Cluster analysis Clustering algorithms Particle swarm optimization (PSO)

作者机构:

  • [ 1 ] [Zhao, Mingru]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhao, Mingru]Beijing Key Laboratory of Intelligent Logistics System, Beijing Wuzi University, Beijing 101149, China
  • [ 3 ] [Tang, Hengliang]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Tang, Hengliang]Beijing Key Laboratory of Intelligent Logistics System, Beijing Wuzi University, Beijing 101149, China
  • [ 5 ] [Guo, Jian]Beijing Key Laboratory of Intelligent Logistics System, Beijing Wuzi University, Beijing 101149, China
  • [ 6 ] [Sun, Yuan]Beijing Key Laboratory of Intelligent Logistics System, Beijing Wuzi University, Beijing 101149, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

International Journal of Applied Mathematics and Statistics

ISSN: 0973-1377

年份: 2013

期: 22

卷: 51

页码: 309-316

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:109/3601777
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司