• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Wenwen (Chen, Wenwen.) | Liu, Zhongliang (Liu, Zhongliang.) (学者:刘中良) | Li, Yanxia (Li, Yanxia.) | Jiang, Kejun (Jiang, Kejun.) | Hou, Junxian (Hou, Junxian.) | Lou, Xiaoge (Lou, Xiaoge.) | Xing, Xiaoye (Xing, Xiaoye.) | Liao, Qiang (Liao, Qiang.) | Zhu, Xun (Zhu, Xun.)

收录:

EI Scopus SCIE

摘要:

A 3D macroporous stainless steel fiber felt (SSFF) is used as base material and a simple water bath method is adopted to directly load Pd nanocatalysts on SSFF to fabricate the air cathode of microbial fuel cells (MFCs). The optimum Pd loading is explored on the basis of the optimized PVP additive amount and reaction temperature. To attain a high ORR activity, a conductive carbon black filling layer is added into the 3D pores of Pd-SSFF. A series of physical and electrochemical tests are conducted to characterize the morphology, chemical composition and oxygen reduction activity and then the obtained cathodes are installed in MFCs for electricity production verification. The results show that the Pd-SSFF cathode at a Pd loading of 0.5 mg cm(-2) (Pd-SSFF-0.5) achieves high output voltage and power density (492.65 mV, 390.79 mW m(-2)) which are comparable to the conventional Pt/C electrode (504.80 mV, 405.47 mW m(-2)). Furthermore, with Pd-SSFF-0.5 cathode the high-voltage platform duration of MFC in one operation cycle is 2.79 times of that of Pt/C electrode. Excellent mechanical properties (high pressure and corrosion tolerance), high electric energy output and simple fabrication prove it is an efficient strategy to improve the overall performance of MFCs using the obtained cathodes. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

Three-phase interface Microbial fuel cells Oxygen reduction activity Stainless steel fiber felt Air cathode

作者机构:

  • [ 1 ] [Chen, Wenwen]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhongliang]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Yanxia]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Jiang, Kejun]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Hou, Junxian]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Lou, Xiaoge]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Xing, Xiaoye]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Jiang, Kejun]Natl Dev & Reform Commiss, Energy Res Inst, Beijing 100038, Peoples R China
  • [ 9 ] [Liao, Qiang]Chongqing Univ, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China
  • [ 10 ] [Zhu, Xun]Chongqing Univ, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China

通讯作者信息:

  • 刘中良

    [Liu, Zhongliang]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ELECTROCHIMICA ACTA

ISSN: 0013-4686

年份: 2019

卷: 324

6 . 6 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:166

JCR分区:1

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 22

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:1022/3899449
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司