• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Zhen (Yang, Zhen.) (学者:杨震) | Lai, Ying-Xu (Lai, Ying-Xu.) (学者:赖英旭) | Duan, Li-Juan (Duan, Li-Juan.) (学者:段立娟) | Li, Yu-Jian (Li, Yu-Jian.) | Xu, Xin (Xu, Xin.)

收录:

EI Scopus PKU CSCD

摘要:

Social network analysis in Enron corpus found that the real e-mail network was a scale-free and small world in some degree. Then a spam collaborative filtering method was designed based on users' interaction. By adjusting the parameter λ, users can decide filtering spam by themselves or others or trade-off between them. Even in the absence of reading habits of users, the collaborative filtering method could achieve good performance. Because the Enron corpus was unlabeled, by adding i.i.d. assumption constraint to training data set W and test data set T, we labeled Enron corpus using improved EM (Expectation maximization) algorithm in a sense of minimum statistical risk in W ∪ T. Experiment results showed that the collaborative filtering method is simple and effective which can steadily increase average accuracy compared with single machine and ensemble filterings. Copyright © 2012 Acta Automatica Sinica. All rights reserved.

关键词:

Electronic mail Economic and social effects Statistical tests Classification (of information) Risk perception Text processing Collaborative filtering Maximum principle Distributed computer systems

作者机构:

  • [ 1 ] [Yang, Zhen]College of Computer Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Lai, Ying-Xu]College of Computer Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Duan, Li-Juan]College of Computer Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Li, Yu-Jian]College of Computer Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Xu, Xin]College of Computer Sciences, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2012

期: 3

卷: 38

页码: 399-411

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:871/3913243
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司