收录:
摘要:
Traditional kernelised classification methods could not perform well sometimes because of using a single and fixed kernel, especially on some complicated data sets. In this paper, a novel optimal double-kernel combination (ODKC) method is proposed for complicated classification tasks. Firstly, data are mapped by two basic kernels into different feature spaces respectively, and then three kinds of optimal composite kernels are constructed by integrating information of the two feature spaces. Comparative experiments demonstrate the effectiveness of our methods.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Acta Electronica Sinica
ISSN: 0372-2112
年份: 2012
期: 2
卷: 40
页码: 260-265