• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Bin (Gao, Bin.) | Zhang, Qi (Zhang, Qi.) | Chang, Yu (Chang, Yu.) (学者:常宇)

收录:

EI Scopus SCIE PubMed

摘要:

As the alternative treatment for heart failure, left ventricular assist devices (LVADs) have been widely applied to clinical practice. However, the effects of the support modes of LVADs on the biomechanical states of the aortic valve are still poorly understood. Hence, the present study investigates such effects and proposes a novel fluid-structure interaction (FSI) approach that combines the lattice Boltzmann method (LBM) and finite element (FE) method. Two support modes of LVADs, namely constant speed mode and constant flow mode, which have been widely applied to clinical practice, are also designed. Results demonstrate that the support modes of LVADs could significantly affect the biomechanical states of the aortic valve and the blood flow pattern of the ascending aorta. Compared with those in the constant flow mode, the leaflets in the constant speed mode could achieve better dynamic performance and lower stress during the systolic phase. The max radial displacement of the leaflets in the constant speed mode is at 8 mm, whereas that in the constant flow mode is at 0.8 mm. Furthermore, the outflow of LVADs directly impacts the aortic surfaces of the leaflets during the diastolic phase by increasing the level of wall shear stress of the leaflets. The leaflets in the constant speed mode receive less impact than those in the constant flow mode. The condition with such minimal impact is conducive to maintaining the normal structure of leaflets and benefits the reduction of the risk of valvular diseases. In sum, the support modes of LVADs exert a crucial effect on the biomechanical environment of the aortic valve. The constant speed mode is better than the constant flow mode in terms of providing a good hemodynamic environment for the aortic valve.

关键词:

LVAD Fluid-structure interaction Lattice Boltzmann method Aortic valve

作者机构:

  • [ 1 ] [Gao, Bin]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Qi]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China
  • [ 3 ] [Chang, Yu]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Gao, Bin]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

ISSN: 0140-0118

年份: 2019

期: 12

卷: 57

页码: 2657-2671

3 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:3

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:260/4514441
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司