• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Li, Jia-Ming (Li, Jia-Ming.) | Wu, Xiao-Long (Wu, Xiao-Long.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Interval type-2 fuzzy neural network (IT2FNN) has attracted considerable interest for modeling nonlinear dynamic systems in recent years. However, this promising technique is confronting the problem that constructing a suitable IT2FNN is a potential challenge ignored by most researchers. To solve this problem, a self-constructing interval type-2 fuzzy neural network (SC-IT2FNN), based on the cooperative strategies, is proposed in this paper. The main contributions of this paper are: First, a comprehensive evaluation algorithm (CEA), cooperating with the parameter optimization, is developed to design the structure of SC-IT2FNN to enhance its generalization performance. Second, a hierarchical optimization mechanism, cooperating with the nonlinear and linear parameters of SC-IT2FNN, is proposed to accelerate its learning speed. Third, the convergence of SC-IT2FNN is theoretically analyzed in detail to ensure its successful applications. Finally, several benchmark nonlinear systems and a real application are utilized to evaluate the effectiveness of SC-IT2FNN. The results demonstrate that our proposed SC-IT2FNN significantly improve the modeling performance in terms of high accuracy and compact structure. (C) 2019 Elsevier B.V. All rights reserved.

关键词:

Comprehensive evaluation algorithm Convergence analysis Cooperative strategy Hierarchical optimization mechanism Self-constructing interval type-2 fuzzy neural network

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Jia-Ming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Xiao-Long]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Jia-Ming]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Wu, Xiao-Long]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2019

卷: 365

页码: 249-260

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:58

JCR分区:1

被引次数:

WoS核心集被引频次: 25

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:157/3611489
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司