• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Yong-Sheng (Qi, Yong-Sheng.) | Wang, Pu (Wang, Pu.) (学者:王普) | Gao, Xue-Jin (Gao, Xue-Jin.) (学者:高学金) | Chen, Xiu-Zhe (Chen, Xiu-Zhe.)

收录:

EI Scopus PKU CSCD

摘要:

In industrial manufacturing, most fermentation processes are inherently multiphase and uneven-length batch processes in nature. Based on different dynamic nonlinear characteristics of different fermentation phases, a new strategy is proposed by using multi-phase dynamic principal component analysis (PCA) for fermentation process monitoring. Using Gaussian mixture model (GMM) clustering arithmetic, fermentation process data are divided into several operation stages, since GMM is adopted to discriminate different operation modes. Then, run-to-run variations among different instances of a phase are synchronized by using dynamic time warping (DTW), and sub-phase dynamic PCA models are developed for every phase. Finally, the proposed method is applied to monitor both the industrial processes of fed-batch penicillin production and interleukin-2 production in recombinant E. coli. Results demonstrate that fewer false alarms and small fault detection delay are obtained and the algorithm is proved to be efficient.

关键词:

Batch data processing Escherichia coli Fault detection Fermentation Gaussian distribution Principal component analysis Process control Process monitoring

作者机构:

  • [ 1 ] [Qi, Yong-Sheng]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Qi, Yong-Sheng]College of Electric Power, Inner Mongolia University of Technology, Huhhot 010051, China
  • [ 3 ] [Wang, Pu]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Gao, Xue-Jin]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Chen, Xiu-Zhe]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2012

期: 10

卷: 38

页码: 1474-1481

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:144/3605998
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司