收录:
摘要:
Home range estimation is the basis of ecology and animal behavior research. Some popular estimators have been presented; however, they have not fully considered the impacts of terrain and obstacles. To address this defect, a novel estimator named the density-based fuzzy home range estimator (DFHRE) is proposed in this study, based on the active learning method (ALM). The Euclidean distance is replaced by the cost distance-induced geodesic distance transformation to account for the effects of terrain and obstacles. Three datasets are used to verify the proposed method, and comparisons with the kernel density-based estimator (KDE) and the local convex hulls (LoCoH) estimators and the cross validation test indicate that the proposed estimator outperforms the KDE and the LoCoH estimators.
关键词:
通讯作者信息:
电子邮件地址: