• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Shuo (Xu, Shuo.) (学者:徐硕) | Hao, Liyuan (Hao, Liyuan.) | An, Xin (An, Xin.) | Yang, Guancan (Yang, Guancan.) | Wang, Feifei (Wang, Feifei.)

收录:

SSCI EI Scopus SCIE

摘要:

Emerging research topic detection can benefit the research foundations and policy-makers. With the long-term and recent interest in detecting emerging research topics, various approaches are proposed in the literature. Though, there is still a lack of well-established linkages between the clear conceptual definition of emerging research topics and the proposed indicators for operationalization. This work follows the definition by Wang (2018), and several machine learning models are together used to detect and foresight the emerging research topics. Finally, experimental results on gene editing dataset discover three emerging research topics, which make clear that it is feasible to identify emerging research topics with our framework. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

Emerging research topics Topic modeling Citation Influence Model Dynamic Influence Model Machine learning

作者机构:

  • [ 1 ] [Xu, Shuo]Beijing Univ Technol, Coll Econ & Management, Res Base Beijing Modern Mfg Dev, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 2 ] [Hao, Liyuan]Beijing Univ Technol, Coll Econ & Management, Res Base Beijing Modern Mfg Dev, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Feifei]Beijing Univ Technol, Coll Econ & Management, Res Base Beijing Modern Mfg Dev, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 4 ] [An, Xin]Beijing Forestry Univ, Sch Econ & Management, 35 Qinghua East Rd, Beijing 100083, Peoples R China
  • [ 5 ] [Yang, Guancan]Renmin Univ China, Sch Informat Resource Management, 59 Zhongguancun St, Beijing 100872, Peoples R China

通讯作者信息:

  • [An, Xin]Beijing Forestry Univ, Sch Econ & Management, 35 Qinghua East Rd, Beijing 100083, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF INFORMETRICS

ISSN: 1751-1577

年份: 2019

期: 4

卷: 13

3 . 7 0 0

JCR@2022

ESI学科: SOCIAL SCIENCES, GENERAL;

ESI高被引阀值:84

JCR分区:1

被引次数:

WoS核心集被引频次: 41

SCOPUS被引频次: 46

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:34/3918850
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司