• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Hui-Qing (Zhang, Hui-Qing.) | Shi, Xiao-Wei (Shi, Xiao-Wei.) | Deng, Gui-Hua (Deng, Gui-Hua.) | Gao, Xue-Jin (Gao, Xue-Jin.) (学者:高学金) | Ren, Ming-Rong (Ren, Ming-Rong.)

收录:

EI Scopus PKU CSCD

摘要:

Based on lots of research and analysis on indoor radio signal propagation features and the traditional indoor location algorithms, a new method that uses BP(Back Propagation) neural network to fit the indoor radio signal propagation model is proposed, which avoids inaccurately estimating the parameters A and n in the indoor radio signal propagation model. Distance value proportional to the RSSI(Received Signal Strength Indicator) input through the well-trained BP neural network is obtained, and then Taylor series expansion algorithm is used to determine the coordinates of the blind node. Finally, the simulation and experiment results on the ZigBee platform verify the feasibility and effectiveness of the proposed algorithm.

关键词:

Backpropagation algorithms Location Neural networks Simulation platform Tantalum compounds Taylor series Torsional stress Zigbee

作者机构:

  • [ 1 ] [Zhang, Hui-Qing]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Shi, Xiao-Wei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Shi, Xiao-Wei]Beijing Division, China Nuclear Power Technology Research Institute, Beijing 100086, China
  • [ 4 ] [Deng, Gui-Hua]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Gao, Xue-Jin]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 6 ] [Ren, Ming-Rong]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Electronica Sinica

ISSN: 0372-2112

年份: 2012

期: 9

卷: 40

页码: 1876-1879

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:135/3603614
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司