• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Zhao-Zhao (Zhang, Zhao-Zhao.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

This paper presents an online architecture design algorithm for radical basis function (RBF) neural network based on online subtractive clustering algorithm aiming at designing the minimal RBF neural network structure. The algorithm combines the characteristics that the online substractive clustering can track the real-time condition with the parameters learning process of the RBF neural network, which makes the RBF neural network adapt to the change of real-time condition dynamics while maintaining a compact network architecture. Therefore, this method can effectively solve the problem of self-organizing structure design of the RBF neural network. Only the kernel function whose Euclidean distance is nearest to the real-time conditions is adjusted, which greatly improves the learning speed of the network. The results of experiments on the typical function approximation and the chaotic time series prediction show that the algorithm owns favorable dynamic character response and approximating ability.

关键词:

Approximation algorithms Cluster computing Clustering algorithms Functions Learning algorithms Network architecture Radial basis function networks

作者机构:

  • [ 1 ] [Zhang, Zhao-Zhao]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhang, Zhao-Zhao]Institute of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
  • [ 3 ] [Qiao, Jun-Fei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2012

期: 7

卷: 27

页码: 997-1002

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:119/3611568
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司