• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Mingru (Zhao, Mingru.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Liu, Chunnian (Liu, Chunnian.) | Tang, Hengliang (Tang, Hengliang.)

收录:

EI Scopus

摘要:

In the recent years, the social foraging behavior of E. coli bacteria in human intestine has been used to solve optimization problems. This paper presents an improved K-Means algorithm involving bacterial foraging in order to overcome the defects in K-Means algorithm. The paper applied both the new clustering algorithm named K-Means-BFA-K-Means algorithm (KBFAK) and the elementary K-Means algorithm to the fabric data items. It is found that the KBFAK has the same results as K-Means, but its execution time has been largely reduced. © 2012 Praise Worthy Prize S.r.l. - All rights reserved.

关键词:

Escherichia coli K-means clustering

作者机构:

  • [ 1 ] [Zhao, Mingru]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhao, Mingru]School of Information, Beijing Wuzi University, Beijing 101149, China
  • [ 3 ] [Ji, Junzhong]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Liu, Chunnian]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Tang, Hengliang]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 6 ] [Tang, Hengliang]School of Information, Beijing Wuzi University, Beijing 101149, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

International Review on Computers and Software

ISSN: 1828-6003

年份: 2012

期: 5

卷: 7

页码: 2546-2549

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:871/3913224
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司