• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Yuting (Wu, Yuting.) (学者:吴玉庭) | Guo, Zhiyu (Guo, Zhiyu.) | Lei, Biao (Lei, Biao.) | Shen, Lili (Shen, Lili.) | Zhi, Ruiping (Zhi, Ruiping.)

收录:

EI Scopus SCIE

摘要:

Single-screw expander (SSE) has the potential to meet the high pressure ratio condition in small-scale middle temperature ORC system. In this paper, variable internal volume ratio (from 3.00 to 8.00), new methods for calculating mass flow rate and friction power are integrated into the structure-based SSE thermodynamic model. And the maximum calculation error of mass flow rate, volume efficiency and shaft efficiency is 2.8%, 2.1% and 2.3% respectively compared with the experimental data. Herein, the influence of internal volume ratio on shaft efficiency, shaft power, volume efficiency, intake/exhaust pressure loss and friction loss are studied. The optimal internal volume ratio and shaft efficiency for five working fluids (R123, HFO-1336mzz(Z), R601, Cyclopentane, R245fa) are obtained when evaporation temperature changes from 373 K to 463 K. The results show that the optimal internal volume ratio is not the bigger the better when SSE works at high pressure ratio condition, because intake pressure loss also increases with the increase of internal volume ratio. The optimal shaft efficiency increases with the decrease of friction power, but the optimal internal volume ratio is almost unaffected. Furthermore, reducing intake pressure loss is a powerful means to improve the performance of SSE with large internal volume ratio. (C) 2019 Elsevier Ltd. All rights reserved.

关键词:

Middle-temperature ORC Internal volume ratio Performance analysis Optimization Single-screw expander

作者机构:

  • [ 1 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Heat Transfer & Energy Convers, Beijing Municipal, Beijing 100124, Peoples R China

通讯作者信息:

  • 吴玉庭

    [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, 100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2019

卷: 186

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 27

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2576/4245681
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司