• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mao, Guo-Jun (Mao, Guo-Jun.) | Wang, Xin (Wang, Xin.) | Zhu, Cui (Zhu, Cui.)

收录:

EI Scopus PKU CSCD

摘要:

As the most existing stream clustering algorithms can not generate online clustering results in real-time, an online data stream clustering algorithm is proposed by using sliding windows and density-based grid storage structure. The algorithm achieves a rapid speed for online clustering data stream and it can provide users with real-time clustering results and reflect the dynamic evolution of data streams. Experimental results show that the algorithm proposed has a good capacity of dealing with rapid evolutional data stream and have a good clustering quality.

关键词:

Digital storage Data mining Evolutionary algorithms Clustering algorithms

作者机构:

  • [ 1 ] [Mao, Guo-Jun]College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wang, Xin]College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zhu, Cui]College of Computer Science, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2011

期: 10

卷: 37

页码: 1575-1579

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:449/3901756
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司