• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Li-Xin (Gao, Li-Xin.) | Ren, Zhi-Qiang (Ren, Zhi-Qiang.) | Zhang, Jian-Yu (Zhang, Jian-Yu.) | Xu, Yong-Gang (Xu, Yong-Gang.) | Wang, Yan (Wang, Yan.)

收录:

EI Scopus PKU CSCD

摘要:

According to the widespread problem of small sample learning on rolling bearing fault diagnosis, support vector machine (SVM) is used to complete the pattern recognition of bearing fault. In order to solve the problem of poor effect of multi-classification bearing faults owing to time-domain statistical parameters, the Wavelet Packet Decomposition (WPD) technology is introduced to extract energy coefficient of each vibration signal frequency band to construct feature vector, optimize and select feature vector though Fisher ratio method, then the SVM is used for fault pattern recognition and comparative analysis of the classification results of WPD and time-domain statistical parameters. The comparative analysis results have indicated that the SVM technology is an effective classification method for fault identification of rolling bearings. When Fisher ratio method combines with the SVM, the fault classification accuracy and time efficiency is higher than that of the traditional multidimensional time-domain and WPD, the diagnosis precision can also be improved.

关键词:

Computer aided diagnosis Failure analysis Fault detection Frequency domain analysis Pattern recognition Roller bearings Support vector machines Time domain analysis Vectors Vibration analysis Wavelet analysis Wavelet decomposition

作者机构:

  • [ 1 ] [Gao, Li-Xin]Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Ren, Zhi-Qiang]Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zhang, Jian-Yu]Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Xu, Yong-Gang]Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Wang, Yan]Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2011

期: 1

卷: 37

页码: 13-18

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1023/3595733
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司