• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Shuangshuang (Chen, Shuangshuang.) | Huang, Qiumei (Huang, Qiumei.) (学者:黄秋梅)

收录:

EI Scopus SCIE

摘要:

In this paper, we propose and analyze a 4-point finite volume method for a fracture model coupling one-dimensional equations in the fracture with two-dimensional equations in surrounding domains. The pressure is approximated in the piecewise constant spaces, whereas the velocity is calculated by the lowest order Raviart-Thomas elements and piecewise constants in matrix and fracture, respectively. Optimal order error estimates are proved on nonuniform triangular meshes for both the pressure and velocity. Beside, we extend the 4-point finite volume method to nonmatching grids between the fracture and matrix without loss of any accuracy. Numerical experiments on matching and nonmatching meshes are tested for models with higher, lower and anisotropic fracture permeability, and results confirm our theoretical analysis. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.

关键词:

Fracture model Finite volume method Matching and nonmatching grids Error estimates Numerical experiments

作者机构:

  • [ 1 ] [Chen, Shuangshuang]Beijing Univ Technol, BISEC, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Qiumei]Beijing Univ Technol, BISEC, Beijing 100124, Peoples R China

通讯作者信息:

  • 黄秋梅

    [Huang, Qiumei]Beijing Univ Technol, BISEC, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED NUMERICAL MATHEMATICS

ISSN: 0168-9274

年份: 2019

卷: 145

页码: 28-47

2 . 8 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:54

JCR分区:1

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:432/3897936
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司