• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Xibin (Jia, Xibin.) (学者:贾熹滨) | Xiao, Yujie (Xiao, Yujie.) | Yang, Dawei (Yang, Dawei.) | Yang, Zhenghan (Yang, Zhenghan.) | Lu, Chen (Lu, Chen.)

收录:

EI Scopus SCIE

摘要:

To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847 +/- 0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981 +/- 0.002, 0.981 +/- 0.002, 0.991 +/- 0.007 and 0.999 +/- 0.0008, respectively.

关键词:

Multi-parametric MRI deep learning transfer learning data fusion hepatocellular carcinoma differentiation

作者机构:

  • [ 1 ] [Jia, Xibin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Xiao, Yujie]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Lu, Chen]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Yang, Dawei]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
  • [ 5 ] [Yang, Zhenghan]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China

通讯作者信息:

  • [Yang, Zhenghan]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS

ISSN: 1976-7277

年份: 2019

期: 10

卷: 13

页码: 5179-5196

1 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:4

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1638/4282474
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司