• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Jun-Zhong (Ji, Jun-Zhong.) (学者:冀俊忠) | Zhang, Hong-Xun (Zhang, Hong-Xun.) | Hu, Ren-Bing (Hu, Ren-Bing.) | Liu, Chun-Nian (Liu, Chun-Nian.)

收录:

EI Scopus PKU CSCD

摘要:

To learn Bayesian Network (BN) structure from incomplete data, this paper proposed an approach combined with both processes of data completing and Ant Colony Optimization (ACO). First, unobserved data are randomly initialized, thus a complete data is got. Based on such a data set, an initialization BN is learned by Ant Colony Algorithm. Second, in light of the current best structure of evolutionary process, Expectation Maximization (EM) estimating and randomly sampling are performed to complete the data. Third, on the basis of the new complete data set, the BN structure is evolved by an improved ACO process. Finally, the second and third steps are iterated until the global best structure is obtained. Experimental results show the approach can effectively learn BN structure form incomplete data, and is more accurate than MS-EM, EGA, BN-GS algorithms.

关键词:

Ant colony optimization Artificial intelligence Bayesian networks Learning algorithms Maximum principle Simulated annealing

作者机构:

  • [ 1 ] [Ji, Jun-Zhong]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhang, Hong-Xun]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Hu, Ren-Bing]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Liu, Chun-Nian]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2011

期: 6

卷: 37

页码: 933-939,954

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:79/3602133
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司