• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zan, Tao (Zan, Tao.) | Wang, Min (Wang, Min.) (学者:王民) | Cui, Xiao-Guang (Cui, Xiao-Guang.) | Fei, Ren-Yuan (Fei, Ren-Yuan.)

收录:

EI Scopus PKU CSCD

摘要:

In order to improve the ink-presetting precision in the different printing parameters and printing environment, in this paper a novel approach using ANN technique is presented. For precision and rapid ink-presetting in the digital printing process, with the actual qualified printing products as training samples, the printing parameters and dot area percentage as input characteristic values and actual ink key values as ANN output, a three-layer BP network is selected to establish the mapping between the graph-text information and the values of the ink key. The experiment result shows that this method can shorten the adjusting time of the offset press effectively, improve the printing efficiency and reduce production cost.

关键词:

Presses (machine tools) Offset printing Neural networks Digital printing Network layers

作者机构:

  • [ 1 ] [Zan, Tao]The Key Laboratory of Beijing Municipality on Advanced Manufacturing Technology, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wang, Min]The Key Laboratory of Beijing Municipality on Advanced Manufacturing Technology, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Cui, Xiao-Guang]The Key Laboratory of Beijing Municipality on Advanced Manufacturing Technology, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Fei, Ren-Yuan]The Key Laboratory of Beijing Municipality on Advanced Manufacturing Technology, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2011

期: 5

卷: 37

页码: 657-660

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2870/4273121
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司