• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Zhao-Zhao (Zhang, Zhao-Zhao.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Yang, Gang (Yang, Gang.)

收录:

EI Scopus PKU CSCD

摘要:

For the problem that the fully coupled BP neural network suffers the slow convergence rate to solve the large scale complex problems, a structure model of function-dividing BP neural network architecture is presented. By using the physical characteristics of the RBF neurons, the input sample space is decomposed, and different sub-samples space is sent to different sub-module of BP neural network to learn automatically. Compared with the fully coupled BP neural network, the searching space of weight in the learning process of neural network is reduced, the learning speed and network's generalization performance are improved, and the characteristics of the human brain in the learning proces of knowledge accumulation are reflected. Experiments of 3D Mexican hat function approximation and two-spiral classification show that the neural network of function-dividing BP neural network can solve the problem that the fully coupled BP neural network can not solve perfectly.

关键词:

Network architecture Neural networks

作者机构:

  • [ 1 ] [Zhang, Zhao-Zhao]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhang, Zhao-Zhao]Institute of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
  • [ 3 ] [Qiao, Jun-Fei]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Yang, Gang]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2011

期: 11

卷: 26

页码: 1659-1664

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:242/3765636
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司